Premium Essay

Olap

In: Business and Management

Submitted By arg04
Words 256
Pages 2
OLAP

In computing, online analytical processing, or OLAP ( /ˈoʊlæp/), is an approach to answering multi-dimensional analytical (MDA) queries swiftly.[1] OLAP is part of the broader category of business intelligence, which also encompasses relational database report writing and data mining.[2] Typical applications of OLAP include business reporting for sales, marketing, management reporting, business process management (BPM),[3] budgeting and forecasting, financial reporting and similar areas, with new applications coming up, such as agriculture.[4] The term OLAP was created as a slight modification of the traditional database term OLTP (Online Transaction Processing).[5]

OLAP tools enable users to analyze multidimensional data interactively from multiple perspectives. OLAP consists of three basic analytical operations: consolidation (roll-up), drill-down, and slicing and dicing.[6] Consolidation involves the aggregation of data that can be accumulated and computed in one or more dimensions. For example, all sales offices are rolled up to the sales department or sales division to anticipate sales trends. By contrast, the drill-down is a technique that allows users to navigate through the details. For instance, users can view the sales by individual products that make up a region’s sales. Slicing and dicing is a feature whereby users can take out (slicing) a specific set of data of the OLAP cube and view (dicing) the slices from different viewpoints.

Databases configured for OLAP use a multidimensional data model, allowing for complex analytical and ad-hoc queries with a rapid execution time.[7] They borrow aspects of navigational databases, hierarchical databases and relational…...

Similar Documents

Premium Essay

Application of Olap to the Analysis of the Curriculum Chosen by Students

...Application of OLAP to the Analysis of the Curriculum Chosen by Students Hua-long Zhao Department of Geography Dezhou University Dezhou Shandong 253023, China Zhl1970@dzu.edu.cn Abstract—With development of the scale of higher education, more and more data about curriculum chosen by students has been produced. This paper analyzes the application of data warehouse, on-line analytical processing and data mining on the analysis of curriculum chosen by students, accomplishes the design of data warehouse about universities curriculum chosen by students, extracts and transforms curriculum chosen by students data and then loads them into the data warehouse. This paper builds curriculum chosen by students multidimensional cube analysis data model by taking use of OLAP technology, and realizes the query, analysis and show of curriculum chosen by students multidimensional data, so it can analyze the curriculum's establishment situation from many angles, and serve the university teaching decision support system. (Abstract) Keywords-Data Warehouse, OLAP, Dimensional Table, Fact Table, Star Model. Ⅰ. INTRODUCTION Data warehouse is a new database technology that has rapidly developed since 1990s. It can serve the policy-maker well, and it is one of data congregations that have the features of facing theme, integration, variation with time and supporting decision. In the past more than 20 years, with the development and widespread application of database, enterprise has accumulated......

Words: 2276 - Pages: 10

Premium Essay

Management Information Systems

...examples of how OLAP works and its Predictive Analytics INTRODUCTION On-line analytical Processing (OLAP) refers to a computer-based processing with a capability of manipulating and analyzing large volumes of data from multiple perspectives (different points of view). It is one technique you can use to transform data into information. The original system of the OLAP is also known as the multi-dimensional cube or hyper cube. For example, a user can request that data be analyzed to display a spread-sheet showing all of a company's products sold in Ghana in the month of January, compare revenue figures with those for the same products in March, and then see a comparison of other product sales in Ghana in the same time period. Historical Background The first fully functional on-line analytical system was introduced in 1970 by Express, and later in 1995, the Oracle acquired the release for the resource of information. The formal launching for acquisition of OLAP was held in 2007. Oracle also released its own system called Essbase using the OLAP theoretical background and functionality. In 1998, Microsoft stepped in for upgrading and advancement in the OLAP technology. Microsoft worked on the mainstream idea and developed highly advanced online analytical system that is deployed in many large organizations today. Types of OLAP There are 3 types of the on-line analytical systems each with different properties according to the level of use. Multi-dimensional......

Words: 824 - Pages: 4

Premium Essay

Big Data

...Design for E-Commerce Environment Il-Yeol Song and Kelly LeVan-Shultz College of Information Science and Technology Drexel University Philadelphia, PA 19104 (Song, sg963pfa)@drexel.edu ABSTRACT Data warehousing and electronic-commerce are two of the most rapidly expanding fields in recent information technologies. In this paper, we discuss the design of data warehouses for e-commerce environment. We discuss requirement analysis, logical design, and physical design issues in e-commerce environments. We have collected an extensive set of interesting OLAP queries for e-commerce environments, and classified them into categories. Based on these OLAP queries, we illustrate our design with data warehouse bus architecture, dimension table structures, a base star schema, and an aggregation star schema. We finally present various physical design considerations for implementing the dimensional models. We believe that our collection of OLAP queries and dimensional models would be very useful in developing any real-world data warehouses in e-commerce environments. 1. Introduction In this paper, we discuss the design of data warehouses for the electronic-commerce (e-commerce) environment. Data warehousing and e-commerce are two of the most rapidly expanding fields in recent information technologies. “E-commerce provides for sharing of business information, maintaining business relationships, and conducting business transactions by means of telecommunication networks [Zwas96].”......

Words: 9960 - Pages: 40

Free Essay

Infs Assignment

...................  9   3.4  -­‐  Limitations  of  BA  ......................................................................................................................  10   4  -­‐  Issues  with  Business  Intelligence  Strategy  ................................................................................   10   4.1  -­‐  Ethics   ........................................................................................................................................  10   4.2  -­‐  Privacy   ......................................................................................................................................  11   5.1  -­‐  OLAP  Recommendation  -­‐  Oracle  Hyperion  Essbase  ................................................................  12   5.2  -­‐  Data  Mining  Recommendation  -­‐  IBM  Information  Websphere  Datastage  ..............................  12   5.4  -­‐  Data  Visualisation  Recommendation  -­‐  IBM  Cognos  ................................................................  14   Overview  of  Application  of  INFS1602  Course  Material  to  Report  ...................................................  19   ink     sw List  of  References  ....................................................

Words: 4854 - Pages: 20

Free Essay

1 Olap

...последнее время много написано про OLAP. Можно сказать, что наблюдается некоторый бум вокруг этих технологий. Правда, для нас этот бум несколько запоздал, но связано это, конечно, с общей ситуацией в стране. Информационные системы масштаба предприятия, как правило, содержат приложения, предназначенные для комплексного многомерного анализа данных, их динамики, тенденций и т.п. Такой анализ в конечном итоге призван содействовать принятию решений. Нередко эти системы так и называются – системы поддержки принятия решений. Системы поддержки принятия решений обычно обладают средствами предоставления пользователю агрегатных данных для различных выборок из исходного набора в удобном для восприятия и анализа виде. Как правило, такие агрегатные функции образуют многомерный (и, следовательно, нереляционный) набор данных (нередко называемый гиперкубом или метакубом), оси которого содержат параметры, а ячейки – зависящие от них агрегатные данные – причем храниться такие данные могут и в реляционных таблицах, но в данном случае мы говорим о логической организации данных, а не о физической реализации их хранения). Вдоль каждой оси данные могут быть организованы в виде иерархии, представляющей различные уровни их детализации. Благодаря такой модели данных пользователи могут формулировать сложные запросы, генерировать отчеты, получать подмножества данных. Технология комплексного многомерного анализа данных получила название OLAP (On-Line Analytical Processing). OLAP – это ключевой......

Words: 3879 - Pages: 16

Premium Essay

It Systems

...What is Data Mining? What is OLAP? How is data mining different from OLAP? Data mining: Data mining is essential utilized today by organizations with an in number buyer center retail, budgetary, correspondence, and promoting associations. It empowers these organizations to figure out relationships around "interior" components, for example, value, item positioning, or staff abilities, and "outer" variables, for example, financial pointers, rivalry, and client demographics. Also, it empowers them to figure out the effect on deals, client fulfillment, and corporate benefits. At long last, it empowers them to "penetrate down" into synopsis data to view part transactional information. OLAP: OLAP stays for Online Analytical Processing and is designing used to accumulate, regulate and process multidimensional data and outfit brisk access to this data for demonstrative purposes. OLAP is for the most part used inside business reporting for promoting, deals, human possession organization and diverse business fields. OLAP mulls over brisk execution of complex database requests continuously. OLAP energizes complex data sees through data turning, complex data transforming, and data showing. OLAP manages dimensional information, which takes into account much quicker execution of complex database inquiries contrasted with social database administration frameworks. The information structure that OLAP make from the social information is called OLAP block. OLAP solid shapes might be......

Words: 671 - Pages: 3

Free Essay

Pengamen

...diketahui dan diterjemahkan oleh aplikasi lain yang menggunakan standar XBRL. Menurut XBRL, sangat diperlukan untuk dapat mengambil informasi keuangan untuk laporan dari databasekemudian diproses untuk mendapatkan informasi tergantung dari kebutuhan pengguna. Dengan XBRL, informasi keudian dikodekan dan kemudian siap untuk diambil secara elektronis menjadi laporan kepada pengguna informasi. Dengan perangkat yang sesuai, output yanng sesuai dengan yang diinginkan pengguna dapat ditransmisikan secara elektronis, tanpa membutuhkan laporan dalam bentuk kertas. XBRL dengan cepat menjadi peraturan standar baru dalam pellaporan keuangan berbasis internet dan dukungan sistem di AS, EU dan juga seluruh dunia. 29.4 Gudang data, pengolahan data dan OLAP. A. Pentingnya perangkat penyimpanan. Sistem dan database semakin besar, oleh karenanya dibutuhkan dukungan dari perakatan yang dapat memenuhi kebutuhan ini. Banyak perusahaan melakukan percobaan dengan perangkat penyimpanan yang ditawarkan, mengadaptasikannya agar dapat memenuhi permintaan pengguna atas kapasitas penyimpanan yang lebih besar. Teknologi sudah semakin maju, dan saat ini kita memiliki content addressed storage (CAS), yang merubah dari sekedar arsip menjadi lingkungan yang semakin mudah untuk digunakan oleh pengguna dan permintaan aplikasi atas format dari bentuk database lama hingga foto digital. Secara esensi, manajemen penyimpanan adallah meningkatkan bagian dari lingkungan IT perusahaan. B. Data Warehouses dan......

Words: 1181 - Pages: 5

Free Essay

Openerp

...Open Object Business Intelligence Release 1.0 Tiny SPRL 2009-04-09 CONTENTS i ii Open Object Business Intelligence, Release 1.0 I 1 2 Part 1 : Introduction Goal of the project What is for User? 2.1 2.2 2.3 For the end-user: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . For the administrator user: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . For the developer: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 7 9 9 9 9 11 12 15 3 OLAP 3.1 Who uses OLAP and Why? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Terminologies II 5 6 Part 2 : Architecture Schema Components 6.1 6.2 6.3 6.4 6.5 6.6 The Cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The CLI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Cube Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Web Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The OpenOffice plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Open ERP interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 19 21 21 21 21 22 22 22 23 25 26 7 Extra libraries 8 Introduction to the OpenObject Module 8.1...

Words: 9931 - Pages: 40

Premium Essay

Risk

...F4: DW Architecture and Lifecycle Erik Perjons, DSV, SU/KTH perjons@dsv.su.se The data warehouse architecture The back room The front room Analysis/OLAP Productt Product2 Product3 Product4 Time1 Time2 Time3 Time4 Value1 Value2 Value3 Value4 Value11 Value21 Value31 Value41 Data warehouse External sources Extract Transform Load Serve Query/Reporting Operational source systems Data marts Data mining Falö aöldf flaöd aklöd falö alksdf Operational source Data staging systems (RK) area (RK) Legacy systems Back end tools OLTP/TP systems Data presentation area (RK) ”The data warehouse” Presentation (OLAP) servers Data access tools (RK) End user applications Business Intelligence tools Operational Source Systems Operational source systems characteristics: Operational source systems • the source data often in OLTP (Online Transaction Processing) systems, also called TPS (Transaction Processing Systems) • high level of performance and availability • often one-record-at-a time queries • already occupied by the normal operations of the organisation OLTP vs. DSS (Decision Support Systems) OLTP vs. OLAP (Online analytical processing) Operational Source Systems More operational source systems characteristics: Operational source systems • a OLTP system may be reliable and consistent, but there are often inconsistencies between different OLTP systems • different types of data format and data structures in different OLTP systems AND......

Words: 2902 - Pages: 12

Premium Essay

Online Analytical Processing

...database structures, specialized servers, and Web-enable software products (O'Brien & Marakas, 2011). The ability to analyze and synthesize the available data can be a source of a competitive advantage for any firm. Online Analytical Processing (OLAP) is one of tools that can assist managers in making sound business decisions. OLAP is a powerful technology behind many Business Intelligence (BI) applications. It offers many capabilities for data discovery, report viewing, complex analytical calculations, and planning (Olap.com, n.d.). In other words, OLAP is a “computer-enhanced multidimensional analysis” (Achor, 2002). The term OLAP was created by E.F. Codd in 1993. According to Codd and associates, OLAP is made up of many speculative “what-if” and/or “why” data model scenarios conducted within the context of the specific historical basis (Codd, Codd and Salley, 1993). Under these scenarios, the values of major parameters are changed to show potential variances in “supply, production, the economy, sales, marketplace, costs, and/or other environmental and internal factors” (Codd, Codd and Salley, 1993, p.6). These variable groups or dimensions make up a base for the company’s planning, analysis and reporting activities (Bogue, 2005). OLAP tools do not keep individual transaction records in a row-by-column format, like relational databases. Instead, they store consolidated information in multidimensional cubes (Olap.com, n.d.). When necessary, analysts use operations......

Words: 781 - Pages: 4

Premium Essay

Differences Between Aql and Olap

...between AQL and OLAP Auteur Peter den Heijer Adres Veldhofstraat 16 Postcode 7213 AM Plaatsnaam Gorssel Emailadres pdheijer@gmail.com Telefoonnummer 0575-490719 Datum 26 mei 2012 Opleidingsinstituut CAI Opleiding Business Intelligence Opleidingscode BUSI1201UTRx Docent Emiel Caron Versie 3.0 Pagina 1 van 19 Inhoud 1. Introduction ..................................................................................................................................... 3 2. Business Case................................................................................................................................... 3 3. Central Research Question .............................................................................................................. 3 4. Purpose............................................................................................................................................ 3 5. Sub Questions.................................................................................................................................. 4 6. Research Methodology and Scope .................................................................................................. 4 7. Introduction Qlikview ...................................................................................................................... 4 8. Definition of OLAP......

Words: 4959 - Pages: 20

Premium Essay

Data Management

... OLAP (online analytical processing) Star schema What is OLAP (online analytical processing) Fact table OLAP (online analytical processing) is computer processing that enables a Big data analytics Data modeling Ad hoc analysis user to easily and selectively extract and view data from different points of view. For example, a user can request that data be analyzed to display a spreadsheet showing all of a company's beach ball products sold in Florida in the month of July, compare revenue figures with those for the same products in September, and then see a comparison of other product sales in Data visualization Extract, transform, load (ETL) Florida in the same time period. To facilitate this kind of analysis, OLAP data is stored in a multidimensional database. Whereas a relational database can be thought of as two-dimensional, a multidimensional database considers each data attribute (such as product, geographic sales region, and time Association rules (in data mining) Relational database period) as a separate "dimension." OLAP software can locate the intersection of dimensions (all products sold in the Eastern region above a certain price during a certain time period) and display them. Attributes such as time periods can be broken down into subattributes. Denormalization OLAP can be used for data mining or the discovery of previously Master data management (MDM) undiscerned relationships between data items. An OLAP......

Words: 4616 - Pages: 19

Premium Essay

Database Applications

...LP3 Assignment: Database Applications | Amy Bedard | | MT3500 | 10/24/2015 | A data warehouse is a relational database that is designed to help companies analyze data. It usually contains historical data derived from transaction data, but it can include data from other sources. Data warehouses are defined by subject matter and they enable an organization to consolidate data from several sources. They have the ability to hold multiple subject areas of very detailed information that works to integrate all data sources. A data warehouse environment also includes an extraction, transportation, transformation, and loading (ETL) solution, an online analytical processing (OLAP) engine, client analysis tools, and other applications that manage the process of gathering data and delivering it to business users. A data mart is a simple form of a data warehouse that is focused on a single subject or area of a company such as Sales, Finance, or Marketing. Data marts are often built and controlled by a single department within an organization. The sources could be internal operational systems, a central data warehouse, or external data. Compared to a data warehouse, a data mart often holds a single subject area of summarized information that concentrates on integrating information from one particular subject area. Data mining is the practice of automatically searching large stores of data to discover patterns and trends that go beyond simple analysis of data......

Words: 658 - Pages: 3

Premium Essay

Business Intelligence Applications

...query and analysis, OLAP, and data mining. Finally, you use the results of applying these techniques to improve your business operations and start the analysis cycle all over again. This business intelligence process can deliver significant, bottom-line results. Implementing its technologies and applying its process can help make your business more effective and more efficient, increasing revenue, decreasing costs, and improving your relationships with customers and suppliers. Business Intelligence Platforms In order to deliver business intelligence to the widest audience and to maximize the benefits that it can deliver its technologies must be organized. They must be deployed within an infrastructure with the capabilities to implement the business intelligence process that we described above and to support the range of applications best suited to every user of every type. We call that infrastructure a business intelligence platform. Business Intelligence Platform Requirements Business intelligence platforms should include the following technologies. Each technology should implement the capabilities described below. · Data Warehouse Databases. A business intelligence platform should support both relational and multidimensional data warehousing databases. In addition, storage models should support the distribution of data across both and data models should support transparent or near-transparent access to data, wherever it’s stored. · OLAP. OLAP is a......

Words: 2189 - Pages: 9

Premium Essay

"Enterprise Level Data Work Flows and Data Warehouse

... Contents SL No Title Page no 1 Abstract 5 2 Introduction to Databases 6 3 OLTP and OLAP Systems 7 4 Difference between OLTP and OLAP 9 5 Data Modeling 13 6 Workflows in Enterprise level Data warehousing 18 7 Business Intelligence tools used in Data flow and Data Warehousing 21 8 Analysis in Data warehousing 24 9 Conclusion 28 10 Foot Note 30 11 References 31 ABSTRACT These days majority of the applications, may it be web applications or windows applications or mobile applications, are completely database dependent. Most of the application developments are becoming database driven environments, hence rendering databases as one of the most key elements in a software environment. This dependency on databases can attributed to the increasing number of data requirements from the users. A large amount of data has to be stored and it should be stored at a different level of granularity. In order to achieve this, a specific methodology has to be followed in order to store, retrieve and analyze data at different levels. Basic Idea of the Research: The basic idea of the Research is to find out the different methodologies, different environments and different tools used to store, retrieve and analyze data at different levels. This includes some preliminary research on both OLTP and OLAP environments, differences between these two environments, data modeling concepts, how data flows to a data warehouse......

Words: 6349 - Pages: 26